RU EN
Интернет-портал Российского общества клинической онкологии

Материалы конгрессов и конференций

IX РОССИЙСКИЙ ОНКОЛОГИЧЕСКИЙ КОНГРЕСС

ВАРИАНТЫ ПРОГРАММИРОВАННОЙ ГИБЕЛИ КЛЕТОК

Г.Е. Онищенко
МГУ им. М.В.Ломоносова, Москва

В настоящее время различают две основные формы клеточной гибели: некроз и программированную гибель (Kerr et al., 1972). Некроз можно описать как неспецифическое набухание клетки и ее мембранных органелл, которое завершается нарушением их целостности. В результате разрывов в плазматической мембране содержимое клетки оказывается во внеклеточном пространстве. Если некроз происходит в организме многоклеточного животного, развивается воспалительный процесс. Принципиальным отличием программированной гибели клеток является то, что в процессе смерти плазматическая мембрана клетки, как правило, сохраняет свою целостность, и остатки клеток могут быть поглощены макрофагами или соседними клетками. Это означает, что в случае программированной гибели клеток отсутствует генерализованный ответ организма в виде воспалительной реакции.

Программированная гибель клеток привлекает к себе внимание многочисленных исследователей уже более тридцати лет, прежде всего, по двум причинам. Во-первых, как оказалось, она играет важную роль в морфогенетических процессах и в регуляции численности клеток на протяжении всего онтогенетического развития многоклеточного организма. Во-вторых, обнаружено, что возникновение многих тяжелых заболеваний связано с такими нарушениями программы клеточной гибели, при которых клетки либо перестают погибать, и тогда возможно возникновение опухолей, либо гибель захватывает избыточное число клеток, что в свою очередь приводит к патологической дегенерации тканей и органов.

В последние годы в составе программированной клеточной гибели (ПКГ) выделяют несколько типов: апоптоз, аутофагическую гибель и программированный некроз (Ogier Denis, Codagno, 2003; Edinger, Thompson, 2004). В свою очередь, апоптоз может быть подразделен на апоптоз одноядерных клеток и митотическую катастрофу. Последняя при этом подразделяется на апоптоз собственно в митозе и апоптоз полиплоидных клеток, образовавшихся в результате патологического митоза.

Апоптоз. Программа апоптотической гибели состоит из следующих основных этапов: 1) индукция, или запуск программы апоптоза; 2) активация проапоптотических белков; 3) каскад каспаз, расщепляющих белки-мишени; 4) разрушение внутриклеточных органелл или их перестройка; 5) фрагментация клетки на апоптотические тельца; 6) подготовка клетки и ее фрагментов к фагоцитозу макрофагами или соседними клетками.

В запуске апоптоза участвуют различные органеллы (Nigg, 2002; Chen, Wang, 2002; Edinger,Thompson, 2004), но, прежде всего это плазматическая мембрана и митохондрии (Bras et al., 2005).

Индукция апоптоза и активация проапоптотических белков ведет к активации каспаз (цистеиновых протеаз) (Thornberry, Lazebnik, 1998; Chen, Wang, 2002). Различают инициаторные (8, 2, 10, 9) и эффекторные каспазы (3, 7, 6), т.е. каспазы функционируют как протеолитические каскады. Итогом работы эффекторных каспаз является разрушение множества белков, которые могут участвовать в поддержании гомеостаза и в репарации компонентов клетки, белков–регуляторов клеточного цикла, структурных белков и т.д. В результате действия эффекторных каспаз и активированных ими других ферментов (эндонуклеаз, гельзолина и т.д.) разрушаются такие компоненты клетки как внутриядерная ламина, нарушается целостность ДНК, происходит специфическая компактизация хроматина, наблюдается распад элементов цитоскелета, митохондрий, аппарата Гольджи, эндоплазматичекого ретикулума и т.д. Помимо каспазного в последние годы различают некаспазный механизм апоптотической гибели (Wang at al., 2002), при котором происходит выход из митохондрий и миграция в ядро флавопротеина AIF и эндонуклеазы G, вызывающих распад ядерной ДНК на крупные фрагменты. Наблюдаемые при данном механизме конденсация хроматина и экспозиция фосфатидилсерина во внешнем монослое плазматической мембраны соответствуют признакам апоптоза.

Морфологические преобразования в процессе апоптоза выражаются в разной степени распада внутриклеточных компонентов. Конечными этапами апоптоза является уплотнение цитоплазмы, фрагментация ядер и самих клеток с образованием апоптотических телец, в которых могут быть фрагменты ядер, элементы аппарата Гольджи, митохондрии и т.д. Апоптотические клетки и тельца экспонируют на поверхности сигнальные и адгезивные молекулы, которые узнаются соседними клетками или макрофагами и способствуют фагоцитозу (Moreira. Barcinski, 2004). К таким молекулам относятся фосфатидилсерин, лизофосфолипиды, витронектин, тромбоспондин и др. Процессу фагоцитоза способствует также инактивация на поверхности умирающих клеток молекул типа CD31, необходимых для распознавания не подлежащих поглощению жизнеспособных клеток.

Митотическая катастрофа. Понятие «митотической катастрофа» было введено для обозначения гибели клеток, в которых проявлялись признаки патологии митоза. В последние годы дискутируется вопрос о том, что следует называть митотической катастрофой. Согласно одним представлениям, митотическая катастрофа - это реализация апоптотической программы собственно в процессе митоза (Castedo et al., 2004). При этом сегрегация хромосом отсутствует, и клетка блокируется в одной из фаз митоза. Как правило, блок происходит в так называемом К-митозе (колхицино-подобном митозе), когда в митотической клетке нарушены организация веретена и выстраивание хромосом в виде метафазной пластинки. Далее происходит активация каспаз и последующие деструктивные события по типу апоптотических. Митохондриальный путь активации программы апоптоза считают преобладающим при гибели клеток собственно в митозе. Завершается апоптоз образованием апоптотических телец и их фагоцитозом. Вторым подтипом митотической катастрофы является гибель клеток, перешедших после аномального митоза в следующую G1-фазу без нормальной сегрегации хромосом и образования дочерних клеток (Roninson et al., 2001), т.е. постмитотическая гибель полиплоидных клеток. При общей эуплоидности полиплоидной клетки ее отдельные ядра являются в основном анеуплоидными. Данный подтип митотической катастрофы может быть назван апоптозом клетки, прошедшей полиплоидизирующий митоз.

Причиной митотической катастрофы считают нарушение процессов контроля в клетках, в которых могли произойти повреждения ДНК или нарушения сборки веретена (Castedo et al., 2004). Ключевым моментом в блокировании клеточного цикла и в индукции в этих клетках апоптоза является экспрессия р53, который служит фактором транскрипции для р21 – ингибитора G1–фазы клеточного цикла и для ряда проапоптотических белков.

Митотическая катастрофа принципиально отличается от апоптоза одноядерных клеток и аутофагической гибели тем, что нарушение ее программы может существенно повлиять на хромосомный состав клеток. Если в тетраплоидной клетке, возникшей в результате нарушения сегрегации хромосом, неактивны механизмы, ведущие к апоптозу или действующие в пункте проверки G1–фазы, то такая клетка может пройти очередной клеточный цикл и митоз. Как известно, деление полиплоидных клеток часто сопровождается многополюсностью веретена, в результате чего после сегрегации хромосом могут возникать анеуплоидные клетки. Анеуплоидия может вести в свою очередь к отсутствию пунктов контроля пролиферации и нарушению механизмов гибели клеток. Клоны потомков таких клеток могут служить основой для трансформации клеток и роста опухолей (Castedo et al., 2004). Недавно появились данные о том, что изменение хромосомного состава диплоидных клеток действительно может влиять на их способность вступать в апоптоз. Обнаружено, что если сестринские клетки, образовавшиеся в результате многополюсного митоза и являющиеся анеуплоидными, подвергнуть апоптотическому воздействию, погибает лишь часть таких клеток. Другие же сестринские клетки остаются жизнеспособными (Александрова, Онищенко, 2004). Пока остается неясным, как долго эти клетки продолжают жить. Но такие жизнеспособные анеуплоидные клетки можно, безусловно, рассматривать в качестве одного из этапов озлокачествления опухолей. Таким образом, преодоление именно митотического пункта проверки без нормализации состояния клетки (например, формирование многополюсного, а не биполярного веретена, образование микроядер) может быть источником клонов клеток, генетический состав которых, а значит, и их свойства, резко отличаются от исходных родительских клеток.

Аутофагическая гибель. В качестве второго типа программированной гибели клеток в настоящее время выделяют гибель клеток, при которой в клетки запускается программа аутофагии (Ogier Denis, Codagno, 2003; Edinger, Thompson, 2004; Gozuacik, Kimchi, 2004; Levine, Klionsky, 2004). Аутофагия – это деградация органелл и цитоплазматического материала, которая происходит при участии внутриклеточных мембранных структур. При аутофагии de novo формируются специализированные структуры – аутофагосомы. Это двухмембранные образования, внутри которых помещается клеточный материал (органелла или часть цитозоля), подлежащий разрушению. При слиянии аутофагосом с лизосомами образуются аутофаголизосомы, где и происходит расщепление подлежащих уничтожению компонентов клетки. Стимулами к запуску процессов аутофагии в клетках многоклеточных животных являются: 1) отсутствие факторов роста или нехватка питательных веществ; 2) наличие в цитоплазме поврежденных органелл, например, митохондрий, пероксисом и т.д.; 3) в клеточных культурах возникновение монослоя и существование контактного торможения. При нехватке питательных соединений клетка начинает утилизировать часть своих цитозольных белков и органелл с помощью аутофагии. В результате при расщеплении этих компонентов в лизосомах или вакуолях в клетке поддерживается необходимый уровень тех соединений, которые нужны ей для жизнедеятельности. При образовании аутофагосом экспрессируются белки Apg, Aut, Cvt, функциональная роль которых в настоящее время активно изучается.

При аутофагической гибели деятельность аутофагосом и лизосом ведет к тому, что в клетке перевариваются практически все мембранные органеллы. Активированные нуклеазы фрагментируют ДНК ядра, но не на олигонуклеосомные фрагменты, как это происходит при апоптозе. Аутофагический тип гибели называют также лизосомной клеточной смертью. Аутофагическая гибель отличается следующими признаками: 1) частичная конденсация хроматина; 2) иногда пикноз ядра; 3) отсутствие фрагментации ядра и клетки на поздних стадиях гибели; 4) отсутствие деградации ДНК до нуклеосомного уровня; 5) увеличение числа аутофагосом и аутофаголизосом; 6) увеличение лизосомной активности; 7) увеличение протяженности аппарата Гольджи и иногда расширение цистерн эндоплазматического ретикулума; 8) длительная сохранность микротрубочек и промежуточных филаментов; 9) иногда возрастание проницаемости митохондрий; 10) отсутствие активации каспаз. В конечном итоге остается клеточный дебрис – остаток клетки, окруженный плазматической мембраной, который фагоцитируется макрофагами.

Программированный некроз. Длительное время некроз рассматривали лишь как вариант неспецифической гибели клетки. Фактической причиной гибели при некрозе считают резкое падение содержания АТФ в клетках до такого уровня, который не совместим с жизнью (Fiers et al., 1999; Edinger, Thompson, 2004). «Энергетическая катастрофа» может быть вызвана, например, токсинами или физическими повреждениями. Морфологическими признаками некроза является набухание клеток и их мембранных органелл, неспецифическая компактизация хроматина, вакуолизация цитоплазмы, нарушение целостности плазматической мембраны и выход содержимого клеток во внеклеточное пространство. В итоге в многоклеточном организме в области некроза развивается воспалительная реакция.

Понятие «программированный некроз» сформировалось на основании данных о том, что существует сигнальный путь инициации некроза в ответ на связывание рецепторами таких молекул как TNF, на фоне подавления апоптоза (Fiers et al., 1999). Индуцировать программу некроза можно, если активировать программу апоптоза связыванием таких лигандов как Fas, TRAIL или вызывая гиперэкспрессию проапоптотического белка Bax, и в тоже время либо ингибируя активность каспаз, либо вызывая гиперэкспрессию антиапоптотических белков. Программированный некроз в свою очередь может быть подавлен, если на клетки воздействовать антиоксидантами либо подавить активность протеинкиназы RIP (Holler et al., 2000). Интересно, что протеинкиназа RIP является одной из мишеней действия каспаз. Это означает, что инициация и осуществление апоптоза активно подавляют развитие некроза в клетках. То же относится и к PARP. Существуют данные о том, что высокий уровень активности PARP, например, при повреждениях ДНК ведет к резкому снижению уровня NAD как в ядре, так и в цитоплазме. Результатом этого является подавление гликолиза. В том случае, когда клетки обеспечиваются АТФ в значительной степени за счет гликолиза, подавление гликолиза может приводить к резкому снижению содержания АТФ, что заканчивается некрозом клетки. При апоптозе PARP является мишенью действия широкого набора эффекторных каспаз. Таким образом, механизм апоптоза направлен, в том числе, и на подавление ферментов, активность которых может приводить к запуску некроза. (Edinger, Thompson, 2004). Физиологическое значение такого противоборства между апоптозом и программированным некрозом проявляется на двух системах. На клетках, инфицированных вирусом vaccinia virus, программированный некроз может быть не только вариантом гибели в условиях подавления апоптоза, но и выполнять функцию усиления иммунных реакций в ответ на инфицирование микроорганизмами. Отрицательная связь между апоптозом и программированным некрозом прослеживается и при повреждении ДНК, вызванном химическими агентами или ионизирующим излучением. В неопухолевых клетках в этих случаях включаются пункты проверки, действующие во всех фазах интерфазы клеточного цикла и предотвращающие вступление в митоз клеток с нарушенным геномом (Rieder, Khodjakov, 1997). В случае нарушения механизмов репарации клетки погибают путем апоптоза. Однако, как оказалось, если в таких клетках с поврежденной ДНК нарушены механизмы осуществления апоптоза, что является достаточно распространенным в трансформированных клетках, клетки погибают путем программированного некроза. Физиологическое значение некроза в такой ситуации имеет двоякий смысл. С одной стороны программированная гибель клеток путем некроза в отсутствие апоптоза все же снижает риск передачи дочерним клеткам мутаций (Edinger, Thompson, 2004). С другой стороны, распад клеток при некрозе может способствовать активации иммунного ответа многоклеточного организма.

Если проанализировать, в каких фазах клеточного цикла возможен тот или иной вариант гибели клеток, то складывается следующая картина. В отличие от апоптоза, который может запускаться в разных фазах клеточного цикла, в том числе и собственно в митозе в форме митотической катастрофы, аутофагическая гибель развивается преимущественно в непролиферирующих клетках (G0-фаза и терминальная дифференцировка). Однако если в пролиферирующих клетках подавлены механизмы апоптоза, например, инактивированы каспазы, то гибель пролиферирующих клеток осуществляется по механизму программированного некроза.

В условиях многоклеточного организма программа гибели поврежденных или закончивших свой жизненный цикл клеток может определяться следующими факторами: 1) типом и уровнем дифференцировки; 2) положением в клеточном цикле; 3) набором присутствующих в микроокружении цитокинов; 4) состоянием энергетической системы. В зависимости от программы гибели последствия могут быть различными. При аутофагической гибели или апоптозе покоящихся и терминально дифференцированных клеток их остатки удаляются макрофагами. То же происходит при апоптоза пролиферирующих интерфазных клеток. Включение программы митотической катастрофы может вести не только к гибели делящихся клеток, но и к такому явлению как цитогенетическая катастрофа (Castedo et al., 2004), которая сопровождается появлением клонов анеуплоидных клеток. Эти клетки могут ускользать от апоптоза; увеличивается риск появления клонов клеток с нарушениями контроля пролиферации и гибели, т.е. опухолевых клеток. Составляющей механизма программы некроза является энергетическая катастрофа, ведущая к разрушению клеток и, как следствие, к воспалительной реакции, масштабы которой могут определяться как числом некротизированных клеток, так и антигенными свойствами соединений, оказавшихся во внеклеточном пространстве. Следует отметить, что при определенных условиях процесс реализации одной программы гибели на каких-то этапах может сменяться другой, например, начавшаяся аутофагия может сменяться апоптозом, а апоптоз завершиться постапоптотическим некрозом. Возникло представление о существовании общей сети, связывающей разные события в клеточной цикле по типу интерактивной (Tyers, 2004). Очевидно, аналогичная общая сеть сопрягает такие процессы как дифференцировка, пролиферация и программированная гибель. Поиск ключевых узлов этой системы связи является наиболее привлекательным направлением исследований. Чем подробнее будут изучены пункты переключения одних программ на другие, тем эффективнее будет выбор стратегии химиотерапии опухолей. При этом важным моментом такой стратегии является не только уничтожение опухолевых клеток, но и предотвращение возможных отдаленных последствий используемой программы клеточной гибели.

Работа поддержана грантом РФФИ 05-04-49248

Список литературы:

1. Александрова Е., Онищенко Г.Е., 2004, Доклады РАН, 399:507-509.

2. Bras M., Queenan B., Susiin S.A. 2005, Biochemistry 70:231-239.

3. Castedo M., Perfettini J.Z., Roumier T., Andreau K., Medema R., Kroemer G. 2004, Oncogene, 23:2825-2837.

4. Chen M. and Wang J., 2002, Apoptosis, 7:313-319.

5. Edinger A.Z. and Thompson C., 2004, Curr. Opin. Cell Biol., 16:663-669.

6. Fiers W., Beyaert R., Declercq W., Vandenabeele P., 1999, Oncogene, 18:7719-7730.

7. Gozuacik D and Kimchi A., Oncogene 2004, 23:2891-2906.

8. Kerr J. F. R., Wyllie A.H., Curruie A.R., 1972. Br. J. Cancer, 26:239-257.

9. Levine B. and Klionsky D.J., 2004, Dev. Cell, 6:463-477.

10. Moreira M.E. and Barcinski M.A., 2004, An Acad. Bras. Cienc., 76:93-115.

11. Nigg E.A., 2002, Nature Rev. 2: 1-11.

12. Ogier Denis .E. and Codogno P., 2003, Biochem. Biophys Acta, 1603:113-128.

13. Rieder C.D. and Khodjakov A., 1997, Progr. Cell Cycle Res., 3: 301-312.

14. Roninson I. B., Broude E.V., Chang B.D., 2001, Drug Res. Updates, 4:303-313.

15. Thornberry N.A., Lazebnik Y., Science 1998, 281:1312-1316.

16. Tyer M., 2004, Curr Opin Cell Biol., 16:602-613.

17. Wang X., Yang C., Chai J., Shi, Xue D., 2002, Science, 298:1587-1592.