RU EN
Интернет-портал Российского общества клинической онкологии

Материалы конгрессов и конференций

V РОССИЙСКАЯ ОНКОЛОГИЧЕСКАЯ КОНФЕРЕНЦИЯ

НЕТРАДИЦИОННОЕ ФРАКЦИОНИРОВАНИЕ ДОЗЫ

А.В. Бойко, Черниченко А.В., С.Л. Дарьялова, Мещерякова И.А., С.А. Тер-Арутюнянц
МНИОИ им. П.А. Герцена, Москва

Использование ионизирующих излучений в клинике основано на различиях в радиочувствительности опухоли и нормальных тканей, именуемых радиотерапевтическим интервалом. При воздействии ионизирующих излучений на биологические объекты возникают альтернативные процессы: повреждение и восстановление. Благодаря фундаментальным радиобиологическим исследованиям, выяснилось, что при облучении в культуре ткани степень лучевого повреждения и восстановления опухоли и нормальных тканей равнозначны. Но ситуация резко меняется при облучении опухоли в организме больного. Первичное повреждение остается равнозначным, но не равнозначно восстановление. Нормальные ткани за счет стойких нейрогуморальных связей с организмом-носителем восстанавливают лучевые повреждения быстрее и полнее, чем опухоль в силу присущей ей автономии. Используя эти различия и управляя ими, можно добиться тотального разрушения опухоли, сохранив нормальные ткани.

Нетрадиционное фракционирование дозы представляется нам одним из самых привлекательных способов управления радиочувствительностью. При адекватно подобранном варианте дробления дозы без каких-либо дополнительных затрат можно добиться существенного повышения повреждения опухоли с одновременной защитой окружающих тканей.

Обсуждая проблемы нетрадиционного фракционирования дозы, следует определить понятие "традиционных" режимов лучевой терапии. В разных странах мира эволюция лучевой терапии привела к появлению различных, но ставших "традиционными" для этих стран режимов фракционирования дозы. Например, в соответствии с Манчестерской школой, курс радикального лучевого лечения состоит из 16 фракций и проводится более 3 недель, в то время как в США 35-40 фракций подводятся в течение 7-8 недель. В России в случаях радикального лечения традиционным считается фракционирование по 1,8-2 Гр один раз в день, 5 раз в неделю до суммарных доз, которые определяются морфологической структурой опухоли и толерантностью нормальных тканей, расположенных в зоне облучения (обычно в пределах 60-70 Гр).

Дозолимитирующими факторами в клинической практике служат либо острые лучевые реакции, либо отсроченные постлучевые повреждения, которые в значительной мере зависят от характера фракционирования. Клинические наблюдения за пациентами, подвергнутыми лечению в традиционных режимах, позволили лучевым терапевтам установить ожидаемую связь между степенью выраженности острых и отсроченных реакций (другими словами, интенсивность острых реакций коррелирует с вероятностью развития отсроченного повреждения нормальных тканей). По-видимому, наиболее важным следствием разработки режимов нетрадиционного фракционирования дозы, имеющим многочисленные клинические подтверждения, является тот факт, что описанная выше ожидаемая вероятность появления лучевых повреждений уже не является корректной: отсроченные эффекты более чувствительны к изменениям разовой очаговой дозы, подводимой за фракцию, а острые реакции более чувствительны к колебаниям уровня суммарной дозы.

Итак, толерантность нормальных тканей определяется дозозависимыми параметрами (суммарная доза, общая продолжительность лечения, разовая доза за фракцию, количество фракций). Два последних параметра определяют уровень аккумуляции дозы. Интенсивность острых реакций, развивающихся в эпителии и других нормальных тканях, в чью структуру входят стволовые, созревающие и функциональные клетки (например, костный мозг), отражает равновесие между уровнем клеточной гибели под влиянием ионизирующего излучения и уровнем регенерации выживших стволовых клеток. Это равновесие в первую очередь зависит от уровня аккумуляции дозы. Тяжесть острых реакций определяет также и уровень дозы, подводимой за фракцию (в пересчете на 1 Гр крупные фракции оказывают большее повреждающее действие, чем мелкие).

После достижения максимума острых реакций (например, развитие влажного либо сливного эпителиита слизистых) дальнейшая гибель стволовых клеток не может привести к нарастанию интенсивности острых реакций и проявляется лишь в увеличении времени заживления. И только если количество выживших стволовых клеток не будет достаточно для репопуляции тканей, то острые реакции могут перейти в лучевые повреждения (9).

Лучевые повреждения развиваются в тканях, характеризующихся медленной сменой клеточной популяции, таких, например, как зрелая соединительная ткань и клетки паренхимы различных органов. В связи с тем, что в таких тканях клеточное истощение не проявляется ранее окончания стандартного курса лечения, то в процессе последнего регенерация невозможна. Таким образом, в отличие от острых лучевых реакций, уровень аккумуляции дозы и общая длительность лечения не оказывают существенного влияния на тяжесть поздних повреждений. В то же время, поздние повреждения зависят главным образом от суммарной дозы, дозы за фракцию, и интервала между фракциями особенно в случаях, когда фракции подводятся за короткий промежуток времени.

С точки зрения противоопухолевого эффекта более эффективен непрерывный курс облучения. Однако это не всегда возможно из-за развития острых лучевых реакций. Одновременно стало известно, что гипоксия опухолевой ткани связана с недостаточной васкуляризацией последней, и было предложено после подведения определенной дозы (критической по развитию острых лучевых реакций) делать перерыв в лечении для реоксигенации и восстановления нормальных тканей. Неблагоприятным моментом перерыва является опасность репопуляции сохранивших жизнеспособность опухолевых клеток, поэтому при использовании расщепленного курса не наблюдается увеличения радиотерапевтического интервала. Первое сообщение о том, что по сравнению с непрерывным курсом лечения расщепленный дает худшие результаты в случае отсутствия коррекции разовой очаговой и общей дозы для компенсации перерыва в лечении, было опубликовано Million et Zimmerman в 1975 (7). Позднее Budhina et al (1980) подсчитали, что доза, необходимая для компенсации перерыва, составляет примерно 0,5 Гр в день (3). В более позднем сообщении Overgaard et al (1988) утверждается: для того, чтобы достичь равной степени радикальности лечения, 3-х недельный перерыв в терапии рака гортани требует увеличения РОД на 0,11-0,12 Гр (т.е. 0,5-0,6 Гр в день) (8). В работе показано, что при величине РОД 2 Гр для сокращения фракции выживающих клоногенных клеток за 3х-недельный перерыв количество клоногенных клеток удваивается в 4-6 раз, при этом время их удвоения приближается к 3,5-5 дням. Наиболее детальный анализ дозового эквивалента для регенерации в процессе фракционированной лучевой терапии был произведен Withers et al и Maciejewski et al (13, 6). Исследования показывают, что после различной продолжительности отставания во фракционированном лучевом лечении выживающие клоногенные клетки развивают настолько высокие темпы репопуляции, что для их компенсации каждый дополнительный день лечения требует прибавки примерно 0,6 Гр. Данная величина дозового эквивалента репопуляции в процессе лучевой терапии близка к таковой, полученной при анализе расщепленного курса. Тем не менее, при расщепленном курсе улучшается переносимость лечения, особенно в случаях, когда острые лучевые реакции препятствуют проведению непрерывного курса.

В последующем величину интервала сократили до 10-14 дней, т.к. репопуляция выживших клоновых клеток начинается в начале 3-й недели.

Толчком к развитию "универсального модификатора" - нетрадиционных режимов фракционирования - послужили данные, полученные при изучении конкретного радиосенсибилизатора ГБО. Еще в 60-х годах было показано, что применение крупных фракций при лучевой терапии в условиях ГБО более эффективно по сравнению с классическим фракционированием даже в контрольных группах на воздухе (2). Безусловно, эти данные способствовали развитию и введению в практику нетрадиционных режимов фракционирования. Сегодня таких вариантов огромное количество. Вот некоторые из них.

Гипофракционирование: применяются более крупные, по сравнению с классическим режимом, фракции (4-5 Гр), общее количество фракций уменьшено.

Гиперфракционирование подразумевает собой применение небольших, по сравнению с "классическими", разовых очаговых доз (1-1,2 Гр), подведенных несколько раз в день. Общее число фракций увеличено.

Непрерывное ускоренное гиперфракционирование как вариант гиперфракционирования: фракции более приближены к классическим (1,5-2 Гр), но подводятся несколько раз в день, что позволяет уменьшить общее время лечения.

Динамическое фракционирование: режим дробления дозы, в котором подведение укрупненных фракций чередуется с классическим фракционированием либо подведением доз меньше 2 Гр несколько раз в день и т.д.

В основу построения всех схем нетрадиционного фракционирования положена информация о различиях в скорости и полноте восстановления лучевых повреждений в различных опухолях и нормальных тканях и степень их реоксигенации.

Так, опухоли, характеризующиеся быстрым темпом роста, высоким пролиферативным пулом, выраженной радиочувствительностью, требуют подведения укрупненных разовых доз. Примером может служить метод лечения больных мелкоклеточным раком легкого (МКРЛ), разработанный в МНИОИ им. П.А. Герцена (1).

При этой локализации опухоли разработаны и изучены в сравнительном аспекте 7 методик нетрадиционного фракционирования дозы. Наиболее эффективной из них оказалась методика дневного дробления дозы. С учетом клеточной кинетики этой опухоли облучение ежедневно проводилось укрупненными фракциями 3,6 Гр с дневным дроблением на три порции по 1,2 Гр, подводимые с интервалом 4-5 часов. За 13 лечебных дней СОД составляет 46,8 Гр, эквивалентных 62 Гр. Из 537 больных полная резорбция опухоли в локо-региональной зоне составила 53-56% против 27% при классическом фракционировании. Из них 23,6% с локализованной формой пережили 5-летний рубеж.

Методика многократного дробления суточной дозы (классической или укрупненной) с интервалом 4-6 часов находит все более широкое применение. В связи с быстрым и более полным восстановлением нормальных тканей при использовании этой методики имеется возможность увеличение дозы в опухоли на 10-15% без возрастания опасности повреждения нормальных тканей.

Сказанное нашло подтверждение в многочисленных рандомизированных исследованиях ведущих клиник мира. Примером могут служить несколько работ, посвященных изучению немелкоклеточного рака легкого (НМРЛ).

В исследовании RTOG 83-11 (II фаза) изучали режим гиперфракционирования, где сравнивались различные уровни СОД (62 Гр; 64,8 Гр; 69,6 Гр; 74,4 Гр и 79,2 Гр), подводимые фракциями по 1,2 Гр дважды в день. Наибольшая выживаемость больных отмечена при СОД 69,6 Гр. Поэтому в III фазе клинических испытаний изучали режим фракционирования с СОД 69,6 Гр (RTOG 88-08). В исследование были включены 490 больных местно-распространенным НМРЛ, которые были рандомизированы следующим образом: 1 группа - по 1,2 Гр два раза в день до СОД 69,6 Гр и 2 группа - по 2Гр ежедневно до СОД 60 Гр. Однако, отдаленные результаты оказались ниже ожидаемых: медиана выживаемости и 5-летняя продолжительность жизни в группах составила 12,2 мес., 6% и 11,4 мес., 5% соответственно.

Fu XL et al. (1997) исследовали режим гиперфракционирования по схеме 1,1 Гр 3 раза в день с интервалом 4 часа до СОД 74,3 Гр. 1-, 2-, и 3- летняя выживаемость составила 72%, 47%, и 28% в группе больных, получавших ЛТ в режиме гиперфракционирования, и 60%, 18%, и 6% в группе с классическим фракционированием дозы (4). При этом "острые" эзофагиты в изучаемой группе наблюдались достоверно чаще (87%) по сравнению с контрольной группой (44%). В то же время не отмечено увеличения частоты и тяжести поздних лучевых осложнений.

В рандомизированном исследовании Saunders NI et al (563 больных) сравнивались две группы больных (10). Непрерывное ускоренное фракционирование (1,5 Гр 3 раза в день в течение 12 дней до СОД 54 Гр) и классическая лучевая терапия до СОД 66 Гр. Больные, пролеченные в режиме гиперфракционирования, имели значительное улучшение показателей 2-летней выживаемости (29%) по сравнению со стандартным режимом (20%). В работе не отмечено также увеличения частоты поздних лучевых повреждений. В то же время в изучаемой группе тяжелые эзофагиты наблюдались чаще, чем при классическом фракционировании (19% и 3% соответственно), хотя они и отмечались преимущественно после окончания лечения.

Другое направление исследований представляет метод дифференцированного облучения первичной опухоли в локорегиональной зоне по принципу "поле в поле", при котором к первичной опухоли подводится большая доза, чем к регионарным зонам, за тот же промежуток времени. Uitterhoeve AL et al (2000) в исследовании EORTC 08912 с целью повышения дозы до 66 Гр добавляли 0,75 Гр ежедневно (boost - объем). 1 и 2 годичная выживаемость составили 53% и 40% при удовлетворительной переносимости (12).

Sun LM et al (2000) подводили дополнительно ежедневно локально к опухоли 0,7 Гр, что позволило, наряду с уменьшением общего времени лечения, достичь в 69,8% случаев ответов опухоли по сравнению с 48,1% при использовании классического режима фракционирования (11). King et al (1996) использовали режим ускоренного гиперфракционирования в сочетании с увеличением очаговой дозы до 73,6 Гр (boost) (5). При этом медиана выживаемости была 15,3 мес.; среди 18 пациентов НМРЛ, подвергшихся контрольному бронхоскопическому исследованию, гистологически подтвержденный локальный контроль составил около 71% при сроках наблюдения до 2 лет.

При самостоятельной лучевой терапии и комбинированном лечении хорошо зарекомендовали себя различные варианты динамического фракционирования дозы, разработанные в МНИОИ им. П.А. Герцена. Они оказались эффективнее, чем классическое фракционирование и монотонное подведение укрупненных фракций при использовании изоэффективных доз не только при плоскоклеточном и аденогенном раке (легкое, пищевод, прямая кишка, желудок, гинекологический рак), но и при саркомах мягких тканей.

Динамическое фракционирование существенно повысило эффективность облучения за счет увеличения СОД без усиления лучевых реакций нормальных тканей.

Так, при раке желудка, традиционно рассматриваемом как радиорезистентная модель злокачественных опухолей, использование предоперационного облучения по схеме динамического фракционирования позволило увеличить 3-летнюю выживаемость больных до 78% по сравнению с 47-55% при хирургическом лечении или при комбинированном с применением классического и интенсивно-концентрированного режима облучения. При этом у 40% больных отмечен лучевой патоморфоз III-IV степени.

При саркомах мягких тканей применение дополнительно к операции лучевой терапии с использованием оригинальной схемы динамического фракционирования позволило снизить частоту местных рецидивов с 40,5% до 18,7% при увеличении 5-летней выживаемости с 56% до 65%. Отмечено достоверное повышение степени лучевого патоморфоза (III-IV степень лучевого патоморфоза у 57% против 26%), и эти показатели коррелировали с частотой локальных рецидивов (2% против 18%).

Сегодня отечественная и мировая наука предлагает использовать различные варианты нетрадиционного фракционирования дозы. Такое многообразие в определенной мере объясняется тем, что учет репарации сублетальных и потенциально летальных повреждений в клетках, репопуляции, оксигенации и реоксигенации, продвижения по фазам клеточного цикла, т.е. основных факторов, определяющих ответ опухоли на облучение, для индивидуального прогнозирования в клинике практически невозможен. Пока мы располагаем лишь групповыми признаками для подбора режима фракционирования дозы. Такой подход в большинстве клинических ситуаций при обоснованных показаниях выявляет преимущества нетрадиционного фракционирования перед классическим.

Таким образом, можно заключить, что нетрадиционное фракционирование дозы позволяет одновременно альтернативно влиять на степень лучевого повреждения опухоли и нормальных тканей, при этом достоверно улучшает результаты лучевого лечения при сохранности нормальных тканей. Перспективы развития НФД связаны с поиском более тесных корреляций между режимами облучения и биологическими характеристиками опухоли.

Список литературы:

1. Бойко А.В., Трахтенберг А.X. Лучевой и хирургический методы в комплексной терапии больных с локализованной формой мелкоклеточного рака легкого. В кн.: "Рак легкого".-М.,1992, с.141-150.

2. Дарьялова С.Л. Гипербарическая оксигенация в лучевом лечении больных злокачественными опухолями. Глава в кн.: "гипербарическая оксигенация", М., 1986.

3. Budhina M, Skrk J, Smid L, et al: Tumor cell repopulating in the rest interval of split-course radiation treatment. Stralentherapie 156:402, 1980

4. Fu XL, Jiang GL, Wang LJ, Qian H, Fu S, Yie M, Kong FM, Zhao S, He SQ, Liu TF Hyperfractionated accelerated radiation therapy for non-small cell lung cancer: clinical phase I/II trial. //Int J Radiat Oncol Biol Phys; 39(3):545-52 1997

5. King SC, Acker JC, Kussin PS, et al. High-dose hyperfractionated accelerated radiotherapy using a concurrent boost for the treatment of nonsmall cell lung cancer: unusual toxicity and promising early results. //Int J Radiat Oncol Biol Phys. 1996;36:593-599.

6. Maciejewski B, Withers H, Taylor J, et al: Dose fractionation and regeneration in radiotherapy for cancer of the oral cavity and oropharynx: Tumor dose-response and repopulating. Int J Radiat Oncol Biol Phys 13:41, 1987

7. Million RR, Zimmerman RC: Evaluation of University of Florida split-course technique for various head and neck squamous cell carcinomas. Cancer 35:1533, 1975

8. Overgaard J, Hjelm-Hansen M, Johansen L, et al: Comparison of conventional and split-course radiotherapy as primary treatment in carcinoma of the larynx. Acta Oncol 27:147, 1988

9. Peters LJ, Ang KK, Thames HD: Accelerated fractionation in the radiation treatment of head and neck cancer: A critical comparison of different strategies. Acta Oncol 27:185, 1988

10. Saunders MI, Dische S, Barrett A, et al. Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small-cell lung cancer: a randomized multicentre trial. CHART Steering Committee. //Lancet. 1997;350:161-165.

11. Sun LM, Leung SW, Wang CJ, Chen HC, Fang FM, Huang EY, Hsu HC, Yeh SA, Hsiung CY, Huang DT Concomitant boost radiation therapy for inoperable non-small-cell lung cancer: preliminary report of a prospective randomized study. //Int J Radiat Oncol Biol Phys; 47(2):413-8 2000

12. Uitterhoeve AL, Belderbos JS, Koolen MG, van der Vaart PJ, Rodrigus PT, Benraadt J, Koning CC, Gonzalez Gonzalez D, Bartelink H Toxicity of high-dose radiotherapy combined with daily cisplatin in non-small cell lung cancer: results of the EORTC 08912 phase I/II study. European Organization for Research and Treatment of Cancer. //Eur J Cancer; 36(5):592-600 2000

13. Withers RH, Taylor J, Maciejewski B: The hazard of accelerated tumor clonogen repopulating during radiotherapy. Acta Oncol 27:131, 1988